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Essentials of Fractional Calculus in R+

For a sufficiently well-behaved function f(t) (t ∈ R+) we may define
the fractional derivative of order µ (m − 1 < µ ≤ m , m ∈ N), see
e.g. Gorenflo and Mainardi (1997), Podlubny (1999), in two different
senses, that we refer here as to Riemann-Liouville (R-L) derivative
and Caputo (C) derivative, respectively. Both derivatives are related to
the so-called Riemann-Liouville fractional integral of order µ > 0
defined as

tJ
µ f(t) :=

1

Γ(µ)

∫ t

0
(t − τ)µ−1 f(τ) dτ , µ > 0 , (A.1)

Γ(µ) :=

∫ ∞

0
e−uuµ−1 du , Γ(n + 1) = n! Gamma function.

By convention tJ0 = I (Identity operator). We can prove

tJ
µ

tJ
ν = tJ

ν
tJ

µ = tJ
µ+ν , µ, ν ≥ 0 , semigroup property (A.2)

tJ
µ tγ =

Γ(γ + 1)

Γ(γ + 1 + µ)
tγ+µ , µ ≥ 0 , γ > −1 , t > 0 . (A.3)



The fractional derivative of order µ > 0 in the Riemann-Liouville sense
is defined as the operator tDµ which is the left inverse of the Riemann-
Liouville integral of order µ (in analogy with the ordinary derivative),

tD
µ

tJ
µ = I , µ > 0 . (A.4)

If m denotes the positive integer such that m−1 < µ ≤ m , we recognize
from Eqs. (A.2) and (A.4)

tD
µ f(t) := tD

m
tJ

m−µ f(t) , (A.5)

hence

tD
µf(t)=






dm

dtm

[
1

Γ(m − µ)

∫ t

0

f(τ) dτ

(t − τ)µ+1−m

]
, m − 1 < µ < m,

dm

dtm
f(t), µ = m.

(A.5′)

For completion tD0 = I. The semigroup property is no longer valid but

tD
µ tγ =

Γ(γ + 1)

Γ(γ + 1 − µ)
tγ−µ , µ ≥ 0 , γ > −1 , t > 0 . (A.6)

The property tD
µ = tJ

−µ is not generally valid!



On the other hand, the fractional derivative of order µ ∈ (m − 1, m]
(m ∈ N) in the Caputo sense is defined as the operator tD

µ
∗ such that

tD
µ
∗ f(t) := tJ

m−µ
tD

m f(t) , (A.7)

hence

tD
µ
∗ f(t) =






1

Γ(m − µ)

∫ t

0

f (m)(τ) dτ

(t − τ)µ+1−m
, m − 1 < µ < m,

dm

dtm
f(t) , µ = m.

(A.7′)

Thus, when the order is not integer the two fractional derivatives differ
in that the derivative of order m does not generally commute with the
fractional integral.

We point out that the Caputo fractional derivative satisfies the rele-
vant property of being zero when applied to a constant, and, in general,
to any power function of non-negative integer degree less than m , if its
order µ is such that m − 1 < µ ≤ m .



Gorenflo and Mainardi (1997) have shown the essential relationships be-
tween the two fractional derivatives (when both of them exist),

tD
µ
∗ f(t) =






tD
µ

[

f(t) −
m−1∑

k=0

f (k)(0+)
tk

k!

]

,

tD
µ f(t) −

m−1∑

k=0

f (k)(0+) tk−µ

Γ(k − µ + 1)
,

m−1 < µ < m . (A.8)

In particular, if m = 1 we have

tD
µ
∗ f(t) =






tD
µ
[
f(t) − f(0+)

]
,

tD
µ f(t) −

f(0+) t−µ

Γ(1 − µ)
,

0 < µ < 1 . (A.9)

The Caputo fractional derivative, represents a sort of regulariza-
tion in the time origin for the Riemann-Liouville fractional deriv-
ative. We note that for its existence all the limiting values f (k)(0+) :=
lim

t→0+
f (k)(t) are required to be finite for k = 0, 1, 2. . . .m − 1.



We observe the different behaviour of the two fractional derivatives at
the end points of the interval (m − 1, m) namely when the order is any
positive integer: whereas tDµ is, with respect to its order µ , an operator
continuous at any positive integer, tD

µ
∗ is an operator left-continuous

since





lim
µ→(m−1)+

tD
µ
∗ f(t) = f (m−1)(t) − f (m−1)(0+) ,

lim
µ→m−

tD
µ
∗ f(t) = f (m)(t) .

(A.10)

We also note for m − 1 < µ ≤ m ,

tD
µ f(t) = tD

µ g(t) ⇐⇒ f(t) = g(t) +
m∑

j=1

cj tµ−j , (A.11)

tD
µ
∗ f(t) = tD

µ
∗ g(t) ⇐⇒ f(t) = g(t) +

m∑

j=1

cj tm−j . (A.12)

In these formulae the coefficients cj are arbitrary constants.



We point out the major utility of the Caputo fractional derivative in
treating initial-value problems for physical and engineering applications
where initial conditions are usually expressed in terms of integer-order
derivatives. This can be easily seen using the Laplace transformation.

Writing the Laplace transform of a sufficiently well-behaved function f(t)
(t ≥ 0) as

L{f(t); s} = f̃(s) :=

∫ ∞

0
e−st f(t) dt ,

the known rule for the ordinary derivative of integer order m ∈ N is

L{tD
m f(t); s} = sm f̃(s) −

m−1∑

k=0

sm−1−k f (k)(0+) , m ∈ N ,

where
f (k)(0+) := lim

t→0+
tD

kf(t) .



For the Caputo derivative of order µ ∈ (m − 1, m] (m ∈ N) we have

L{ tD
µ
∗ f(t); s} = sµ f̃(s) −

m−1∑

k=0

sµ−1−k f (k)(0+) ,

f (k)(0+) := lim
t→0+

tD
kf(t) .

(A.13)

The corresponding rule for the Riemann-Liouvile derivative of order
µ is

L{ tD
µ
t f(t); s} = sµ f̃(s) −

m−1∑

k=0

sm−1−k g(k)(0+) ,

g(k)(0+) := lim
t→0+

tD
kg(t) , g(t) := tJ

m−µ f(t) .

(A.14)

Thus the rule (A.14) is more cumbersome to be used than (A.13) since
it requires initial values concerning an extra function g(t) related to the
given f(t) through a fractional integral.



However, when all the limiting values f (k)(0+) are finite and the order is
not integer, we can prove by that all g(k)(0+) vanish so that the formula
(A.14) simplifies into

L{ tD
µ f(t); s} = sµ f̃(s) , m − 1 < µ < m . (A.15)

For this proof it is sufficient to apply the Laplace transform to Eq. (A.8),
by recalling that

L{tν ; s} = Γ(ν + 1)/sν+1 , ν > −1 , (A.16)

and then to compare (A.13) with (A.14).

For more details on the theory and applications of fractional calculus we
recommend to consult in addition to the well-known books by Samko,
Kilbas & Marichev (1993), by Miller & Ross (1993), by Podlubny (1999),
those appeared in the last few years, by Kilbas, Srivastava & Trujillo
(2006), by West, Bologna & Grigolini (2003), and by Zaslavsky (2005).
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The Standard Relaxation

The classical phenomenon of relaxation in its simplest form is known to
be governed by a linear ordinary differential equation of order one, pos-
sibly non-homogeneous, that hereafter we recall with the corresponding
solution. Denoting by t ≥ 0 the time variable, u = u(t) the field variable,
and by tD1 the first-order time derivative, the relaxation differential
equation (of homogeneous type) reads

tD
1u(t) = −λu(t) , t ≥ 0 , (2.1)

where λ is a positive constant denoting the inverse of some characteristic
time.

The solution of (2.1), under the initial condition u(0+) = 1 , is called the
fundamental solution and reads

u(t) = e−λt , t ≥ 0 . (2.2)



The Fractional Relaxation of Single Order

From the view-point of the Fractional Calculus, see for a short review
the Appendix, there appear in the literature two ways of generalizing the
equation (2.1), one way using the R-L, the other using the C fractional
derivative. Adopting the notation of the Appendix for the R-L and C
derivatives, see Eqs. (A.5) and (A.7) respectively, and denoting by β1

the common fractional order, the two forms read respectively for t ≥ 0

tD
1 u(t) = −λ tD

1−β u(t) , 0 < β ≤ 1, (2.3)

and

tD
β
∗ u(t) = −λu(t) , 0 < β ≤ 1, (2.4)

where now the positive constant λ has dimensions [t]−β.

If we assume the same initial condition, e.g. u(0+) = 1, it is not difficult
to show the equivalence of the two forms by playing with the operators
of standard and fractional integration and differentiation.



Both Eqs (2.3)-(2.4) are equivalent to the Volterra integral equation (of
fractional type)

u(t) = u(0+) − λ tJ
β u(t) .

For example, we derive the R-L equation (2.3) from the fractional integral
equation simply differentiating both sides of the latter, whereas we derive
the fractional integral equation from the C equation (2.4) by fractional
integration of order β. In fact, in view of the semigroup property (A.2)
of the fractional integral, we note that

tJ
β

tD
β
∗u(t)= tJ

β
tJ

1−β
tD

1 u(t)= tJ
1

tD
1 u(t)=u(t) − u(0+) .

In the limit β = 1 we recover the relaxation equation (2.1) with the
solution (2.2).

The reader interested to have more details on the two forms of frac-
tional relaxation may consult, for the R-L approach, the papers by Hilfer
(2000), Metzler and Nonnenmacher (1995), whereas for the C approach
the papers by Caputo and Mainardi (1971), Mainardi (1996), Gorenflo
and Mainardi (1997).



By applying in Eqs. (2.3)-(2.4) the technique of the Laplace transforms
for fractional derivatives of C and R-L type, see (A.13)-(A.15), we get
the same result for the fundamental solution, namely

ũ(s) =
sβ−1

sβ + λ
, (2.5)

that, with the Mittag-Leffler function Eβ , yields in the time domain

u(t) = Eβ(−λtβ) , 0 < β ≤ 1 . (2.6)

Let us recall that the Mittag-Leffler function Eβ(z) (β > 0) is an entire
transcendental function of order 1/β , defined in the complex plane by
the power series

Eβ(z) :=
∞∑

k=0

zk

Γ(β k + 1)
, β > 0 , z ∈ C .

We agree to refer to the equation (2.3) or (2.4) as the simple fractional
relaxation equation in the R-L or C sense, respectively.



The spectral function of the Mittag-Leffler function

We remark that for t ≥ 0 the function Eβ(−λtβ) preserves the complete
monotonicity of the exponential exp(−λt):

Eβ(−λtβ) =
1

π

∫ ∞

0

e−rt

r

λrβ sin(βπ)

λ2 + 2λ rβ cos(βπ) + r2β
dr , 0 < β < 1 .

The spectral function is indeed non negative. Taking λ = 1 and using as
variable the relaxation time τ = 1/r we have

Eβ(−tβ) =

∫ ∞

0
e−t/τ R∗(τ) dτ ,

with

R∗(τ) =
1

πτ

τβ sin(βπ)

1 + 2λ τβ cos(βπ) + τ2β
≥ 0 .
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Asymptotic behaviour of the Mittag-Leffler function

We point out that the Mittag-Leffler function Eβ(−λtβ) decreases at
t → ∞ no longer exponentially if β < 1 but like a power with exponent
−β:

Eβ(−λtβ) ∼ t−β/[λΓ(1 − β)] .

If β = 1/2 we have for t ≥ 0:

E1/2(−λ
√

t) = e λ2t erfc(λ
√

t) ∼ 1/(λ
√

π t) , t → ∞ ,

where erfc denotes the complementary error function.



Plots of the Mittag-Leffler functions

In the following we show the solution (2.6) for a few values of the order
β = β1, β1 = 1/4, 1/2, 3/4, 1, by assuming λ = 1.

In the top plate for the time interval [0, 10] (linear scales), and in the
bottom plate for the time interval [101, 107] (logarithmic scales). In the
bottom plate we have added in dotted lines the asymptotic values for
t → ∞ in order to better visualize the power-law decay expressed by
t−β1/Γ(1 − β1) for the cases 0 < β1 < 1, whereas the case β1 = 1 is not
visible in view of the faster exponential decay.

In both plates we have shown in dashed line the singular solution for
the limiting case β1 = 0, stretching the definition of the Mittag-Leffler
function to the geometric series,

E0(z) = 1/(1 − z) ,

so

u(t) =

{
E0(0) = 1 , t = 0 ,

E0(−t0) ≡ E0(−1) = 1/2 , t > 0 ,
(2.7)
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Fractional Relaxation of Distributed Order

The two forms for fractional relaxation

The simple fractional relaxation equations (2.3)-(2.4) can be generalized
by using the notion fractional derivative of distributed order. We
thus consider the so-called fractional relaxation equation of distrib-
uted order, in the two alternative forms involving the R-L and the C
derivatives, that we write respectively as

tD
1u(t) = −λ

∫ 1

0
p(β) tD

1−βu(t) dβ , (3.1)

∫ 1

0
p(β) tD

β
∗u∗(t) dβ = −λu∗(t) , (3.2)

subjected to the initial condition u(0+) = u∗(0+) = 1, where

p(β) ≥ 0 , and

∫ 1

0
p(β) dβ = c > 0 . (3.3)



The positive constant c can be taken as 1 if we want the integral to be
normalized.

Clearly, some special conditions of regularity and behaviour near the
boundaries will be required for the weight function p(β). We conve-

niently require that its primitive P (β) =
∫ β
0 p(β′) dβ′ vanishes at β = 0

and is there continuous from the right, attains the value c at β = 1 and
has at most finitely many (upwards) jump points in the half-open inter-
val 0 < β ≤ 1, these jump points allowing delta contributions to p(β)
(particularly relevant for discrete distributions of orders).

Since for distributed order the solution depends on the selected approach
(as we shall show hereafter), we now distinguish the fractional equations
(3.1) and (3.2) and their fundamental solutions by decorating in the
Caputo case the variable u(t) with subscript ∗.
The present analysis is based on the application of the Laplace transfor-
mation with particular attention to some special cases. Here, for these
cases, we shall provide plots of the corresponding solutions.



The integral formula for the fundamental solutions

Let us now apply the Laplace transform to Eqs. (3.1)-(3.2) by using
the rules (A.15) and (A.13) appropriate to the R-L and C derivatives,
respectively. Introducing the relevant functions

A(s) = s

∫ 1

0
p(β) s−β dβ , (3.4)

and

B(s) =

∫ 1

0
p(β) sβ dβ , (3.5)

we then get for the R-L and C cases, after simple manipulation, the
Laplace transforms of the corresponding fundamental solutions:

ũ(s) =
1

s + λA(s)
, (3.6)

and

ũ∗(s) =
B(s)/s

λ + B(s)
. (3.7)



We easily note that in the particular case of a single order β1

p(β) = δ(β − β1)

we have in (3.4):
A(s) = s1−β1 ,

and in (3.5):
B(s) = sβ1 ,

Then, Eqs. (3.6) and (3.7) provide the same result (2.5) of the simple
fractional relaxation, that is

ũ(s) = ũ∗(s) =
sβ−1

sβ + λ
, (2.5′)

By inverting the Laplace transforms in (3.6) and (3.7) we obtain the fun-
damental solutions for the R-L and C fractional relaxation of distributed
order.



Let us start with the R-L derivatives. We get (in virtue of the Titchmarsh
theorem on Laplace inversion) the representation

u(t) = −
1

π

∫ ∞

0
e−rt Im

{
ũ
(
reiπ

)}
dr , (3.8)

that requires the expression of −Im {1/[s + λA(s)]} along the ray s =
r eiπ with r > 0 (the branch cut of the function s−β). We write

A
(
r e iπ

)
= ρ cos(πγ) + iρ sin(πγ) , (3.9)





ρ = ρ(r) =

∣∣A
(
r eiπ

)∣∣ ,

γ = γ(r) =
1

π
arg

[
A
(
r eiπ

)]
.

(3.10)

Then, after simple calculations, we get

u(t) =

∫ ∞

0
e−rt H(r; λ) dr , (3.11)

H(r; λ) =
1

π

λ ρ sin(πγ)

r2 − 2λ r ρ cos(πγ) + λ2ρ2
≥ 0 . (3.12)



Similarly for the C derivatives we obtain

u∗(t) = −
1

π

∫ ∞

0
e−rt Im

{
ũ∗

(
reiπ

)}
dr , (3.13)

that requires the expression of −Im {B(s)/[s(λ + B(s))]} along the ray
s = r eiπ with r > 0 (the branch cut of the function sβ). We write

B
(
r e iπ

)
= ρ∗ cos(πγ∗) + iρ∗ sin(πγ∗) , (3.14)





ρ∗ = ρ∗(r) =

∣∣B
(
r eiπ

)∣∣ ,

γ∗ = γ∗(r) =
1

π
arg

[
B
(
r eiπ

)]
.

(3.15)

After simple calculations we get

u∗(t) =

∫ ∞

0
e−rt K(r; λ) dr , (3.16)

K(r; λ) =
1

π r

λρ∗ sin(πγ∗)

λ2 + 2λ ρ∗ cos(πγ∗) + ρ2
∗

≥ 0 . (3.17)



We note from (3.11) and (3.16) that, being H(r; λ) and K(r; λ) non-
negative functions of r for any λ ∈ R+, the fundamental solutions u(t)
and u∗(t) keep the relevant property to be completely monotone.

The integral expressions (3.11) and (3.16) provide a sort of spectral rep-
resentation of the fundamental solutions that will be used to numerically
evaluate these solutions in some examples considered as interesting cases.

Furthermore, it is quite instructive to compute for the fundamental so-
lutions their asymptotic expressions for t → 0 and t → ∞ because they
provide their analytical (even if approximated) representations for suf-
ficiently short and long time respectively, and useful checks for the nu-
merical evaluation in the above time ranges.



For deriving these asymptotic representations we shall apply the Tauberian
theory of Laplace transforms. According to this theory the asymptotic
behaviour of a function f(t) near t = ∞ and t = 0 is (formally) obtained

from the asymptotic behaviour of its Laplace transform f̃(s) for s → 0+

and for s → +∞, respectively. For this purpose we note the asymptotic
representations,
from (3.6):

ũ(s) ∼






1

λA(s)
, s → 0+ , being A(s)/s >> λ ,

1

s

[
1 − λ

A(s)

s

]
, s → +∞ , being A(s)/s << 1/λ ,

(3.18)

and from (3.7):

ũ∗(s) ∼






1

λ

B(s)

s
, s → 0+ , being B(s) << λ ,

1

s

[
1 −

λ

B(s)

]
, s → +∞ , being B(s) >> λ .

(3.19)



Fractional relaxation of distributed order:
examples

Since finding explicit solution formulas is not possible for the relaxation
equations (3.1) and (3.2) we shall concentrate our interest to some typical
choices for the weight function p(β) in (3.3) that characterizes the order
distribution.

For these choices we present the numerical evaluation of the Titchmarsh
integral formula, see Eqs (3.8)-(3.12) for u(t) (the R-L case), and Eqs.
(3.13)-(3.17) for u∗(t) (the C case).

The numerical results are checked by verifying the matching with the
asymptotic expressions of u(t) and u∗(t) as t → 0 and t → +∞, ob-
tained via the Tauberian theory for Laplace transforms., according to
Eqs. (3.18)-(3.19).



The double-order fractional relaxation

We now consider the choice

p(β) = p1δ(β − β1) + p2δ(β − β2) , 0 < β1 < β2 ≤ 1 , (4.1)

where the constants p1 and p2 are both positive, conveniently restricted
to the normalization condition p1 + p2 = 1. Then for the R-L case we
have

A(s) = p1 s1−β1 + p2 s1−β2 , (4.2)

so that, inserting (4.2) in (3.6),

ũ(s) =
1

s[1 + λ(p1 s−β1 + p2 s−β2)]
, (4.3)

Similarly, for the C case we have

B(s) = p1 sβ1 + p2 sβ2 , (4.3)

so that, inserting (4.3) in (3.7),

ũ∗(s) =
p1 sβ1 + p2 sβ2

s[λ + p1 sβ1 + p2 sβ2 ]
. (4.4)



We leave as an exercise the derivation of the spectral functions H(r; λ)
and K(r; λ) of the corresponding fundamental solutions, that are used for
the numerical computation. The numerical results are checked by their
matching with the asymptotic expressions that we evaluate by invoking
the Tauberian theory and using Eqs. (3.18)-(3.19) jointly with Eqs (4.2)-
(4.3) respectively.

For the R-L-case we note that in (4.2) s1−β1 is negligibly small in com-
parison with s1−β2for s → 0+ and, viceversa, s1−β2 is negligibly small in
comparison to s1−β1 for s → +∞.

Similarly for the C-case we note that in (4.3) sβ2 is negligibly small in
comparison to sβ1 for s → 0+ and, viceversa, sβ1 is negligibly small in
comparison sβ2 for s → +∞.



As a consequence of these considerations we get for the R-L case, if
β2 < 1,

ũ(s) ∼






1

λ p2
sβ2−1 , s → 0+ ,

1

s

(
1 − λ p1 s−β1

)
, s → +∞ ,

(4.5)

so that

u(t) ∼






1

λ p2

t−β2

Γ(1 − β2)
, t → +∞ ,

1 − λ p1
tβ1

Γ(1 + β1)
, t → 0+ .

(4.6)

We note that the Eq. (4.5a) and henceforth Eq. (4.6a) lose their meaning
for β2 = 1. In this case we need a more careful reasoning: we consider
the expression for s → 0 provided by (3.18) as it stands, that is

ũ(s) ∼
1

λ [p1s1−β1 + p2]
=

1

λ p1

1

s1−β1 + p2/(λ p1)
. (4.7)



In virtue of the Laplace transform pair

tν−1Eµ,ν (−qtµ) ÷
sµ−ν

sµ + q
, (4.8)

see Eq. (1.80) in Podlubny (1999), where Eµ,ν denotes the Mittag-Leffler
function in two parameters
we get, with q = p2/(λ p1) and µ = ν = 1 − β1, as t → +∞ :

u(t) ∼
1

λ p1
t−β1 E1−β1,1−β1

(
−qt1−β1

)
= −

1

λ p1

d

dt
E1−β1

(
−qt1−β1

)
.

(4.9)
Taking into account the asymptotic behaviour of the Mittag-Leffler func-
tion, we finally get

u(t) ∼ λ
p1

p2

1 − β1

Γ(β1)
t−(2 − β1) as t → +∞ . (4.10)



The generalized Mittag-Leffler function

The Mittag-Leffler function Eµ,ν(z) (-{µ} > 0, ν ∈ C) is defined by the
power series

Eµ,ν(z) :=
∞∑

k=0

zk

Γ(µ k + ν)
, z ∈ C .

It generalizes the classical Mittag-Leffler function to which it reduces for
ν = 1. It is an entire transcendental function of order 1/-{µ}.
With µ, ν ∈ R the function Eµ,ν(−x) (x ≥ 0) turns a completely
monotonic function of x if 0 < µ ≤ 1 and ν ≥ µ, see Miller-Samko
(2001). This property is still valid when x = q tµ (q > 0). In particular,
for 0 < µ = ν < 1 we note

q t−(1−µ) Eµ,µ (−q tµ) = −
d

dt
Eµ (−q tµ) ∼ −

µ

q Γ(1 − µ)
t−(µ+1) , t → +∞ .



Similarly for the C case we get:

ũ∗(s) ∼






p1

λ
sβ1−1 , s → 0+ ,

1

s

(
1 −

λ

p2
s−β2

)
, s → +∞ ,

(4.11)

so that

u∗(t) ∼






p1

λ

t−β1

Γ(1 − β1)
, t → +∞ ,

1 −
λ

p2

tβ2

Γ(1 + β2)
, t → 0+ .

(4.12)

We exhibit in the following Figures the plots of the fundamental solu-
tions for R-L and C fractional relaxation, respectively, in some {β1, β2}
combinations: {1/8, 1/4}; {1/4, 1/2}; {1/2, 3/4}; {3/4, 1}. We have
chosen p1 = p2 = 1/2 and, as usual λ = 1. From the plots the reader is
expected to verify the role played by the different orders for small and
large times according to the corresponding asymptotic expressions, see
Eqs. (4.6), (4.9)-(4.10) and (4.12).
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The uniformly distributed order fractional relaxation

We now consider the choice

p(β) = 1 , 0 < β < 1 . (4.13)

For the R-L case we have

A(s) = s

∫ 1

0
s−β dβ =

s − 1

log s
, (4.14)

hence, inserting (4.14) in (3.6)

ũ(s) =
log s

slog s + λ (s − 1)
. (4.15)

For the C case we have

B(s) =

∫ 1

0
sβ dβ =

s − 1

log s
, (4.16)

hence, inserting (4.16) in (3.7),

ũ∗(s) =
1

s

s − 1

λlog s + s − 1
=

1

s
−

1

s

λ log s

λ log s + s − 1
. (4.17)



We note that for this special order distribution we have A(s) = B(s) but
the corresponding fundamental solutions are quite different, as we see
from their Laplace transforms (4.15) and (4.17).

Then, invoking the Tauberian theory for regularly varying functions
(power functions multiplied by slowly varying functions1), a topic
adequately treated in the treatise on Probability by Feller (1971)Chapter
XIII.5, we have the following asymptotic expressions for the R-L and C
cases.

For the R-L case we get

ũ(s) ∼






log s

λ(s − 1)
, s → 0+ ,

1

s

[
1 − λ

s − 1

slog s

]
, s → +∞ ,

(4.18)

1Definition: We call a (measurable) positive function a(y), defined in a right
neighbourhood of zero, slowly varying at zero if a(cy)/a(y) → 1 with y → 0 for
every c > 0. We call a (measurable) positive function b(y), defined in a neighbourhood
of infinity, slowly varying at infinity if b(cy)/b(y) → 1 with y → ∞ for every c > 0.
Examples: (log y)γ with γ ∈ R and exp (log y/log log y).



so

u(t) ∼






1

λ
e t E1(t) ∼

1

λ t
, t → +∞ ,

1 −
λ

|log (1/t)|
, t → 0+ .

(4.19)

In (4.19a) E1(t) :=

∫ ∞

t

e−u

u
du denotes the exponential integral, see e.g.

Abramowitz and Stegun (1965), Ch. 5 and the Laplace transform pair
(29.3.100).

For the C case we get

ũ∗(s) ∼






1

λ slog (1/s)
, s → 0+ ,

1

s
−

λ log s

s2
, s → +∞ ,

(4.20)

so

u∗(t) ∼






1

λ log t
, t → +∞ ,

1 − λ tlog (1/t) , t → 0+ .
(4.21)



In the next Figure we display the plots of the fundamental solutions
for R-L and C uniformly distributed fractional relaxation, adopting as
previously, in the top plate, linear scales (0 ≤ t ≤ 10), and in the bottom
plate, logarithmic scales (101 ≤ t ≤ 107).

For comparison in the top plate the plots for single orders β1 = 0, 1/2, 1
are shown. We note that for 1 < t < 10 the R-L and C plots are close
to that for β1 = 1/2 from above and from below, respectively.

In the bottom plate (where the plot for β1 is not visible because of its
faster exponential decay) we have added in dotted lines the asymptotic
solutions for large times. We recognize that the C plot is decaying much
slower than any power law whereas the R-L plot is decaying as t−1; this
means that for large times these plots are the border lines for all the
plots corresponding to single order relaxation with β1 ∈ (0, 1).
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Fractional Relaxation: Conclusions

We have investigated the relaxation equation with (discretely or contin-
uously) distributed order of fractional derivatives both in the Riemann-
Liouville and in the Caputo sense. Such equations can be seen as simple
models of more general distributed order fractional evolution in a Banach
space where the relaxation parameter λ is replaced by an operator A act-
ing in this space. A relevant example is time-fractional diffusion where
in the linear case the individual modes exhibit fractional relaxation.

Our interest is focused on structural properties of the solutions, in par-
ticular on asymptotic behaviour at small and large times. In both ap-
proaches we find that the smallest order of occurring fractional differen-
tiation determines the behavior near infinity, but the largest order the
behaviour near zero, in analogy to the special form of time-fractional
diffusion explicitly governed by the distributed order derivative. We see
that the two parameters β1 and β2 play opposite roles in our two cases
(R-L) and (C).
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The Standard Diffusion

The German physiologist Adolf Fick in 1855 published his famous diffu-
sion equation :

∂

∂t
u(x, t) = D

∂2

∂x2 u(x, t) ,

where D is a positive real number called diffusion coefficient.

Bachelier derivation (1900)

Einstein derivation (1905)



Probability interpretation of the standard diffusion

t ≥ 0, u(x, t) probability desity function

A ⊆ R Prob { The object is in A at time t } =

∫

A
u(x, t) dx .

Green function :

u(x, t) =
1

2
√

π
(Dt)−1/2 e−

x
2

4Dt for t > 0 , u(x, 0) = δ(x) .

Variance :

V ar(t) =

∫ +∞

−∞

x2 u(x, t) dx =

∫ +∞

−∞

x2

2
√

π
(Dt)−1/2 e−

x
2

4Dt dx = 2Dt.

General initial condition :

u(x, t) = ρ(x) , u(x, t) =

∫ +∞

−∞

1

2
√

π
(Dt)−1/2 e−

(x−x
′)2

4Dt ρ(x′) dx′ .



!5 !4 !3 !2 !1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5
#=2 
"=1  
$=0 

!5 !4 !3 !2 !1 0 1 2 3 4 5
10!3

10!2

10!1

100

#=2 
"=1  
$=0 

The Gaussian probability density



Karl Pearson’s ‘random walk’ problem

A man starts from the point O and walks l yards in a straight line; he
then turns through any angle whatever and walks another l yards in
a second straight line. He repeats this process n times. I require the
probability that after n stretches he is at a distance between r and r+δr
from his starting point O.
Nature, July 1905.

Details

• The problem was related to the way mosquitoes spread malaria.

• The mosquitoes’ spread was well described by the diffusion equa-
tion.

• The positions of a number of mosquitoes starting from the same
origin followed a Gaussian distribution with variance proportional
to the elapsed time.

Random Walk = Brownian Motion −→ Standard Diffusion



The Anomolous Diffusion

Examples of Anomalous Diffusion

• Charge carriers moving in amorphous media tend to get trapped
by local imperfections and then released due to thermal fluctua-
tions. −→ random waiting times.
H. Scher, E. Montroll, Anomalous transit-time dispersion in amorphous solids,

Physical Review B 12 (1975), pp. 2455-2477.

• Pollutants take longer times to travel than expected from classi-
cal diffusion, due to trapping caused by stagnant regions of zero
velocity of the mean flow of the groundwater.

• Standard diffusion equation has to be replaced by the fractional
version in order to take account of extremely long retention times
of pollutants in a study on the effects of the system memory on
contaminant patterns over long periods. M. Dentz, A. Cortis, H. Scher, B.

Berkowitz, Time behaviour of solute transport in heterogeneous media: transition



from anomalous to normal transport, Advances in Water Resources 27 (2004),

pp. 155-173.

• Protein molecules spend relatively long times trapped between
nanometer-sized compartments in the actin cytoskeleton of the cell.
K. Ritchie, X.-Y. Shan, J. Kondo, K. Iwasawa, T. Fujiwara and A. Kusumi, De-

tection of non-Brownian diffusion in the cell membrane in single molecule tracking,

Biophysical Journal 88, (2005), pp. 2266-2277.

• Conformational fluctuations occur over a broad range of time scales
and can be modeled by a generalized Langevin equation.
W. Min, G. Luo, B. J. Cherayil, S. C. Kou, and X. S. Xie, Observation of a Power-

Law Memory Kernel for Fluctuations within a Single Protein Molecule, Physical

Review Letters 94 198302, (2005).

Broad range of waiting times −→ Sub-diffusion

var(t) ≈ tβ , 0 < β < 1



• Albatrosses fly at an approximately constant velocity for times
having a very broad distribution before changing direction. This
imply their patterns consist of long straight lines interrupted by
localized random motion.
G.M. Viswanathan, V. Afanasyev, S.V. Buldyrev, E.J. Murphy, P.A. Prince and

H.E. Stanley, Levy Flight Search Patterns of Wandering Albatrosses, Nature 381,

(2005), pp. 413-415.

• Spider monkeys move following a Lévy walk pattern.
G. Ramos-Fernandez, J.L. Mateos, O. Miramontes, G. Cocho, H. Larralde and B.

Ayala-Orozco, Levy walk patterns in the foraging movements of spider monkeys

(Ateles geoffroyi), available at http://arxiv.org/abs/physics/0301019, (2003).

• Heavy particles perform long steps in the motion on the surface of
a perfect crystal, since only turning angles obeying the symmetry
of the crystal are allowed.
J.M. Sancho, A.M. Lacasta, K. Lindenberg, I.M. Sokolov and A.H. Romero, Dif-

fusion on a Solid Surface: Anomalous is Normal, Physical Review Letters 92

250601, (2004).



• Anomalous diffusion of tracer particles in a rapidly rotating annular
tank.
T.H. Solomon, E.R. Weeks and H.L. Swinney, Observation of anomalous diffusion

and Lévy flights in a two-dimensional rotating flow, Physical Review Letters 71,

3975-3978, (1993).

Broad distribution of step lengths −→ Super-diffusion

var(t) > 2Dt



The Space Fractional Diffusion Equation
and the Lévy Stable distributions

Standard Diffusion Equation

∂

∂t
u(x, t) =

∂2

∂x2 u(x, t) ,

The Space-time Fractional Diffusion Equation

tD
β
∗ u(x, t) = xD α

θ u(x, t) , u(x, 0) = δ(x) ,

0 < α ≤ 2 , |θ| ≤ min{α, 2 − α} , 0 < β ≤ 1 .

where

tD
β
∗ Caputo fractional derivative

xD α
θ Riesz-Feller fractional derivative



The Riesz-Feller fractional derivative

Writing the Fourier transform of a well-behaved function f(x) (x ∈ R)

F {f(x); κ} = f̂(κ) :=

∫ +∞

−∞

e+iκx f(x) dx ,

we define the Riesz-Feller derivative:

F { xDα
θ f(x); κ} = −ψθ

α(κ) f̂(κ) ,

ψθ
α(κ) = |κ|α ei(signκ)θπ/2 , 0 < α ≤ 2 , |θ| ≤ min {α, 2 − α} .



For α = 2 (hence θ = 0) we have F { xDα
θ f(x); κ} = −κ2 = (−iκ)2 , so

we recover the standard second derivative. More generally for θ = 0 we
have F { xDα

θ f(x); κ} = −|κ|α = −(κ2)α/2 so

xDα
0 = −

(
−

d2

dx2

)α/2

.

In this case we refer to the LHS as simply to the Riesz fractional
derivative of order α .

The Riesz-Feller derivative, in its explicit form, reads:

xDα
θ f(x) =

Γ(1 + α)

π

{
sin [(α + θ)π/2]

∫ ∞

0

f(x + ξ) − f(x)

ξ1+α
dξ

+ sin [(α − θ)π/2]

∫ ∞

0

f(x − ξ) − f(x)

ξ1+α
dξ

}
.

For α = 1 and θ = ±1 it reduces to

xD1
±1 = ± xD = ±

d

dx
.



The Lévy stable densities

We recognize that the Riesz-Feller derivative is required to be the pseudo-
differential operator2 whose symbol −ψθ

α(κ) is the logarithm of the
characteristic function of a general Lévy strictly stable probability den-
sity with index of stability α and asymmetry parameter θ (improperly
called skewness) according to Feller’s parameterization, see Feller (1952),
(1971), as revisited by Gorenflo and Mainardi (1998).

Indeed the Feller canonical form of the characteristic function the Lévy
strictly stable densities Lθ

α(x) (of order α and skewness θ) is

L̂θ
α(κ) = exp

[
−ψθ

α(κ)
]

, κ ∈ R

ψθ
α(κ) = |κ|α ei(signκ)θπ/2 , 0 < α ≤ 2 , |θ| ≤ min {α, 2 − α} .

2Let us recall that a generic pseudo-differential operator A, acting with re-
spect to the variable x ∈ R , is defined through its Fourier representation, namely

+∞

−∞
e iκx A [f(x)] dx = A(κ) f(κ) , where A(κ) is referred to as symbol of A , given

as A(κ) = A e−iκx e+iκx .



!1

!0.5

0

0.5

1

0.5 1 1.5
2

$ 

# 

The Feller-Takayasu diamond



The Laplace-Fourier Representation
and the Self-Similarity Property

In the Laplace-Fourier domain the Space-Time Fractional Diffusion Equa-
tion becomes:

sβ ̂̃u(κ, s) − sβ − 1 = −|κ|α iθ signκ ̂̃u(κ, s) ,

hence

̂̃u(κ, s) =
sβ − 1

sβ + |κ|α iθ sign κ
=⇒ u(x, t) = t−β/α Kθ

α,β

(
x/tβ/α

)
.

where Kθ
α,β is the reduced Green function.



The Mellin-Barnes Integral Representation

F. Mainardi, Yu. Luchko and G. Pagnini,

The fundamental solution of the space-time fractional diffusion equation,

Fractional Calculus and Applied Analysis 4 No 2 (2001), pp. 153-192.

By setting

ρ =
α − θ

2 α
,

the Mellin-Barnes integral representation reads

Kθ
α,β(x) =

1

αx

1

2πi

∫ γ+i∞

γ−i∞

Γ( s
α ) Γ(1 − s

α ) Γ(1 − s)

Γ(1 − β
αs) Γ(ρ s) Γ(1− ρ s)

xs ds .

For β = 1 (space-fractional diffusion) Kθ
α,1(x) := Lθ

α(x).
For α = 2 (time-fractional diffusion) K0

2,β(x) := 1
2Mβ/2(x).

For α = β (neutral-fractional diffusion) Kθ
α,α(x) := Nθ

α(x).
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The equations for time-fractional diffusion of
distributed order

The R-L and the C forms in space-time domain

The standard diffusion equation, that in re-scaled non-dimensional
variables reads

∂

∂t
u(x, t) =

∂2

∂x2
u(x, t) , x ∈ R , t ∈ R+

0 , (2.1)

with u(x, t) as the field variable, can be generalized by using the notion
of fractional derivative of distributed order in time.

For this purpose, following the analysis for fractional relaxation of dis-
tributed order we need, to consider a function p(β) that acts as weight
for the order of differentiation β ∈ (0, 1] such that

p(β) ≥ 0 , and

∫ 1

0
p(β) dβ = c > 0 . (2.2)

The positive constant c can be taken as 1



There are two possible forms of generalization depending if we use frac-
tional derivatives intended in the R-L or C sense. Correspondingly we
obtain the time-fractional diffusion equation of distributed order
in the two forms:

∂

∂t
u(x, t) =

∫ 1

0
p(β) tD

1−β

[
∂2

∂x2
u(x, t)

]
dβ , x ∈ R, t ≥ 0 , (2.3a)

and
∫ 1

0
p(β)

[
tD

β
∗ u∗(x, t)

]
dβ =

∂2

∂x2
u∗(x, t) , x ∈ R, t ≥ 0 . (2.3b)



From now on we shall restrict our attention on the fundamental solu-
tions of Eqs. (2.3a)-(2.3b) so we understand that these equations are
subjected to the initial condition u(x, 0+) = u∗(x, 0+) = δ(x). Since
for distributed order the solution depends on the selected form (as we
shall show hereafter), we now distinguish the two fractional equations
and their fundamental solutions by decorating in the Caputo case the
variable u(x, t) with subscript ∗ as it is customary for the notation of
the corresponding derivative.

Diffusion equations of distributed order of both types have been recently
discussed by several authors. In some papers the authors have referred
to the C and R-L forms as to normal and modified forms of the time-
fractional diffusion equation of distributed order, respectively.

For a thorough general study of fractional pseudo-differential equations
of distributed order let us cite the paper by Umarov and Gorenflo (2005).
For a relationship with the Continuous Random Walk models we may
refer to the paper by Gorenflo and Mainardi (2005).



The RL and C forms in Fourier-Laplace domain

The fundamental solutions for the time-fractional diffusion equations
(2.3a)-(2.3b) can be obtained by applying in sequence the Fourier and
Laplace transforms to them. We write, for generic functions v(x) and
w(t), these transforms as follows:

F {v(x); κ} = v̂(κ) :=

∫ +∞

−∞

e iκx v(x) dx , κ ∈ R ,

L{w(t); s} = w̃(s) :=

∫ +∞

0
e−st w(t) dt , s ∈ C .

Then, in the Fourier-Laplace domain our Cauchy problems [with u(x, 0+) =
u∗(x, 0+) = δ(x)], after applying formulas for the Laplace transform ap-
propriate to the R-L and C fractional derivatives, see (A.8’) and (A.9),

and observing δ̂(κ) ≡ 1 appear in the two forms



ŝ̃u(κ, s) − 1 = −κ2

[∫ ∞

0
p(β)s1−β dβ

]
̂̃u(κ, s) , (2.4a)

[∫ ∞

0
p(β)sβ dβ

]
̂̃u(κ, s) −

∫ ∞

0
p(β)sβ−1 dβ = −κ2 ̂̃u(κ, s) . (2.4b)

Then, introducing the relevant functions

A(s) =

∫ 1

0
p(β) s1−β dβ , (2.5a)

B(s) =

∫ 1

0
p(β) sβ dβ , (2.5b)

we then get for the R-L and C cases the Fourier-Laplace representation
of the corresponding fundamental solutions:

̂̃u(κ, s) =
1

s + κ2A(s)
=

1/A(s)

κ2 + s/A(s)
, (2.6a)

̂̃u∗(κ, s) =
B(s)/s

κ2 + B(s)
. (2.6b)



From Eqs. (2.6a)-(2.6b) we recognize that the passage between the R-L
and the C form can be carried out by the transformation

{C : B(s)} ⇐⇒
{

R-L :
s

A(s)

}
. (2.7)

We note that in the particular case of time fractional diffusion of single
order β0 (0 < β0 ≤ 1) we have p(β) = δ(β − β0) hence in (2.5a): A(s) =
s1−β0 , in (2.5b): B(s) = sβ0 , so that B(s) ≡ s/A(s). Then, Eqs. (2.6a)
and (2.6b) provide the same result

̂̃u(κ, s) ≡ ̂̃u∗(κ, s) =
sβ0−1

κ2 + sβ
0

. (2.8)

This is consistent with the well-known result according to which the two
forms are equivalent for the single order case. However, for a generic
order distribution, the Fourier-Laplace representations (2.6a) (2.6b) are
different so they produce in the space-time domain different fundamen-
tal solutions, that however are interrelated in some way in view of the
transformation (2.7).



The variance of the fundamental solutions

General considerations

Before trying to get the fundamental solutions in the space-time domain
to be obtained by a double inversion of the Fourier-Laplace transforms, it
is worth to outline the expressions of their second moment (the variance)
since these can be derived from Eqs. (2.6a)-(2.6b) by a single Laplace
inversion, as it is shown hereafter. We recall that the time evolution of
the variance is relevant for classifying the type of diffusion.

Denoting for the two forms

R-L : σ2(t) :=

∫ +∞

−∞

x2 u(x, t) dx , C : σ2
∗(t) :=

∫ +∞

−∞

x2 u∗(x, t) dx ,

(3.1)
we easily recognize that

R-L : σ2(t) = −
∂2

∂κ2
û(κ = 0, t) , C : σ2

∗(t) = −
∂2

∂κ2
û∗(κ = 0, t) .

(3.2)



As a consequence we need to invert only Laplace transforms taking into
account the behaviour of the Fourier transform for κ near zero.
For the R-L case we get from Eq. (2.6a),

̂̃u(κ, s) =
1

s

(
1 − κ2 A(s)

s
+ . . .

)
,

so we obtain

σ̃2(s) = −
∂2

∂κ2
̂̃u(κ = 0, s) =

2A(s)

s2
. (3.3a)

For the C-case we get from Eq. (2.6b)

̂̃u∗(κ, s) =
1

s

(
1 − κ2 1

B(s)
+ . . .

)
,

so we obtain

σ̃2
∗(s) = −

∂2

∂κ2
̂̃u∗(κ = 0, s) =

2

s B(s)
. (3.3b)



Except for the single order diffusion, were we recover the well-know result

σ2(t) ≡ σ2
∗(t) = 2

tβ0

Γ(β0 + 1)
, 0 < β0 ≤ 1 , (3.4)

for a generic order distribution, we expect that the time evolution of the
variance substantially depends on the chosen (R-L or C) form.

We shall now concentrate our interest to some typical choices for the
weight function p(β) that characterizes the time-fractional diffusion equa-
tions of distributed order (2.3a) and (2.3b). This will allow us to compare
the results for the R-L form and for the C form.



Fractional diffusion of double-order

First, we consider the choice

p(β) = p1δ(β − β1) + p2δ(β − β2) , 0 < β1 < β2 ≤ 1 , (3.5)

where the constants p1 and p2 are both positive, conveniently restricted
to the normalization condition p1 + p2 = 1.

Then for the R-L case we have

A(s) = p1 s1−β1 + p2 s1−β2 , (3.6a)

so, in virtue of (3.3a), we have

σ̃2(s) = 2 p1 s−(1+β1) + 2 p2 s−(1+β2) . (3.7a)

Finally the Laplace inversion yields, see and compare [?, ?],

σ2(t) = 2 p1
tβ1

Γ(β1 + 1)
+ 2 p2

tβ2

Γ(β2 + 1)
∼






2p1
tβ1

Γ(1 + β1)
, t → 0+ ,

2p2
tβ2

Γ(1 + β2)
, t → +∞ .

(3.8a)



Similarly, for the C case we have

B(s) = p1 sβ1 + p2 sβ2 , (3.6b)

so, in virtue of (3.3b),

σ̃2
∗(s) =

2

p1 s(1+β1) + p2 s(1+β2)
. (3.7b)

Finally the Laplace inversion yields

σ2
∗(t) =

2

p2
tβ2 Eβ2−β1,β2+1

(
−

p1

p2
tβ2−β1

)
∼






2

p2

tβ2

Γ(1 + β2)
, t → 0+ ,

2

p1

tβ1

Γ(1 + β1)
, t → +∞ .

(3.8b)



Then we see that for the R-L case we have an explicit combination of two
power laws: the smallest exponent(β1) dominates at small times whereas
the largest exponent (β2) dominates at large times. For the C case we
have a Mittag-Leffler function in two parameters so we have a combi-
nation of two power laws only asymptotically for small and large times;
precisely we get a behaviour opposite to the previous one, so the largest
exponent(β2) dominates at small times whereas the smallest exponent
(β1) dominates at large times. We can derive the above asymptotic be-

haviours directly from the Laplace transforms (3.7a)-(3.7b) by applying
the Tauberian theory for Laplace transforms.

In fact for the R-L case we note that for A(s) in (3.6a) s1−β1 is negligi-
bly small in comparison with s1−β2 for s → 0+ and, viceversa, s1−β2 is
negligibly small in comparison to s1−β1 for s → +∞.

Similarly for the C case we note that for B(s) in (3.6b) sβ2 is negligibly
small in comparison to sβ1 for s → 0+ and, viceversa, sβ1 is negligibly
small in comparison sβ2 for s → +∞.



Fractional diffusion of uniformly distributed order

We consider the choice

p(β) = 1 , 0 < β < 1 . (3.9)

For the R-L case we have

A(s) = s

∫ 1

0
s−β dβ =

s − 1

log s
, (3.10a)

hence, in virtue of (3.3a),

σ̃2(s) = 2

[
1

slog s
−

1

s2log s

]
. (3.11a)

σ2(t) = 2 [ν(t, 0) − ν(t, 1)] ∼

{
2/log (1/t) , t → 0 ,

2t/log t , t → ∞ ,
(3.12a)

ν(t, a) :=

∫ ∞

0

ta+τ

Γ(a + τ + 1)
dτ , a > −1 .



For the C case we have

B(s) =

∫ 1

0
sβ dβ =

s − 1

log s
, (3.10b)

hence, in virtue of (3.3b),

σ̃2
∗(s) =

2

s

log s

s − 1
. (3.11b)

Then, by inversion,

σ2
∗(t) = 2

[
log t + γ + e t E1(t)

]
∼

{
2t log (1/t), t → 0,

2 log (t), t → ∞ ,
(3.12b)

where

E1(t) :=

∫ ∞

t

e−u

u
du = e−t

∫ ∞

0

e−u

u + t
du

denotes the exponential integral function and γ = 0.57721... is the so-
called Euler-Mascheroni constant.



For the uniform distribution we find it instructive to compare the time
evolution of the variance for the R-L and C forms with that corresponding
to a few of single orders.

In the following Figures we consider moderate times (0 ≤ t ≤ 10) using
linear scales, and large times (101 ≤ t ≤ 107) using logarithmic scales.
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Evaluation of the fundamental solutions

The two strategies

In order to determine the fundamental solutions u(x, t) and u∗(x, t) in
the space-time domain we can follow two alternative strategies related
to the order in carrying out the Fourier-Laplace in (2.6a) and (2.6b)
(S1) : invert the Fourier transforms getting ũ(x, s), ũ∗(x, s) and then
invert the remaining Laplace transforms;
(S2) : invert the Laplace transform getting û(κ, t), û∗(κ, t) and then
invert the remaining Fourier transform.

Before considering the general case of time-fractional diffusion of dis-
tributed order, we prefer to briefly recall the determination of the fun-
damental solution u(x, t) (common for both the R-L and C forms) for
the single order case.



The single order diffusion

For the time-fractional diffusion equation of single order β0 the strategy
(S1) yields the Laplace transform

ũ(x, s) =
sβ0/2−1

2
e−|x|sβ0/2

, 0 < β0 ≤ 1 . (4.1)

Such strategy was adopted by Mainardi (1993)-(1997) to obtain the
Green function in the form

u(x, t) = t−β0/2 U
(
|x|/tβ0/2

)
, −∞ < x < +∞ , t ≥ 0 , (4.2)

where the variable X := x/tβ0/2 acts as similarity variable and the
function U(x) := u(x, 1) denotes the reduced Green function.



Restricting from now on our attention to x ≥ 0, the solution turns out

U(x) =
1

2
Mβ0/2(x) =

1

2

∞∑

k=0

(−x)k

k! Γ[−β0k/2 + (1 − β0/2)]

=
1

2π

∞∑

k=0

(−x)k

k!
Γ[(β0(k + 1)/2] sin[(πβ0(k + 1)/2] ,

(4.3)

where Mβ0/2(x) is an an entire transcendental function of the Wright
type. Since the fundamental solution has the peculiar property to be
self-similar it is sufficient to consider the reduced Green function U(x).
In the Figure we show the graphical representations of U(x) for different
orders ranging from β0 = 0, for which we recover the Laplace density

U(x) =
1

2
e−|x| , (4.4)

to β0 = 1, for which we recover the Gaussian density (of variance σ2 = 2)

U(x) =
1

2
√

π
e−x2/4 . (4.5)
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The Strategy (S2): yields the Fourier transform.

û(κ, t) = Eβ0

(
−κ2tβ0

)
, 0 < β0 ≤ 1 , (4.6)

where Eβ0 denotes the Mittag-Leffler function. The strategy (S2) has
been followed by Gorenflo, Iskenderov and Luchko (2000)and by Mainardi,
Luchlo and Pagnini (2001) to obtain the Green functions of the more
general space-time-fractional diffusion equations (of single order), and
requires to invert the Fourier transform by using the machinery of the
Mellin convolution and the Mellin-Barnes integrals. Restricting ourselves
here to recall the final results, the reduced Green function for the time-
fractional diffusion equation now appears, for x ≥ 0, in the form:

U(x) =
1

π

∫ ∞

0
cos (κx) Eβ0

(
−κ2

)
dκ

=
1

2x

1

2πi

∫ σ+i∞

σ−i∞

Γ(1 − s)

Γ(1 − β0s/2)
xs ds ,

(4.7)

with 0 < σ < 1.

By solving the Mellin-Barnes integrals using the residue theorem, we
arrive at the same power series (4.3) of the M -Wright function. Both



strategies allow us to prove that the Green function is non-negative and
normalized, so it can be interpreted as a spatial probability density evolv-
ing in time with the similarity law (4.2).

For readers’ convenience we like to mention other papers dealing with
the fundamental solutions of fractional diffusion equations (of single or-
drer); a non exhaustive list includes AnhLeonenko (2001), Eidelman-
Kochubei (2004), Hanyga (2002), Hilfer (2000), Kochubei (1990), Met-
zler (1994), Metzler-Klafter (2000),Saichev-Zaslavsky (1997), Schneider-
Wyss (1989), Zaslavsky (2002) and references therein.



The distributed order diffusion

Similarly with the single order diffusion, also for the cases of distributed
order we can follow either strategy (S1) or strategy (S2). Here we follow
the strategy (S1). This choice implies to recall the Fourier transform pair
(a straightforward exercise in complex analysis based on residue theorem
and Jordan’s lemma)

c

d + κ2

F↔
c

2d1/2
e−|x|d1/2

, d > 0 . (4.8)

In fact we recognize by comparing (4.8) with (2.6a)-(2.6b) that for the
RL and C forms we have

R-L :

{
c = c(s) := 1/A(s)

d = d(s) := s/A(s)
C :

{
c = c(s) := B(s)/s ,

d = d(s) := B(s)
(4.9)

Now we have to invert the Laplace transforms obtained inserting (4.9)
in the R.H.S of (4.8).



For the R-L case we have:

ũ(x, s) =
1

2[sA(s)]1/2
exp

{
−|x|[s/A(s)]1/2

}
. (4.10a)

For the C case we have:

ũ∗(x, s) =
[B(s)]1/2

2s
exp

{
−|x|[B(s)]1/2

}
. (4.10b)

Following a standard procedure in complex analysis, the Laplace in-
version requires the integration along the borders of the negative real
semi-axis in the s-complex cut plain; in fact this semi-axis, defined by
s = re±iπ with r > 0 turns out the branch-cut common for the functions
s1−β (present in A(s)for the RL form) and sβ (present in B(s) for the C
form). Then, in virtue of the Titchmarsh theorem on Laplace inversion,
we get the representations in terms of real integrals of Laplace type.



For the R-L case we get

u(x, t) = −
1

π

∫ ∞

0
e−rt Im

{
ũ
(
x, reiπ

)}
dr , (4.11a)

where, in virtue of (4.10a), we must know A(s) along the ray s = r eiπ

with r > 0. We write

A
(
r e iπ

)
= ρ cos(πγ) + iρ sin(πγ) , (4.12a)

where 



ρ = ρ(r) =

∣∣A
(
r eiπ

)∣∣ ,

γ = γ(r) =
1

π
arg

[
A
(
r eiπ

)]
.

(4.13a)



Similarly for the C case we obtain

u∗(x, t)=−
1

π

∫ ∞

0
e−rt Im

{
ũ∗

(
x, reiπ

)}
dr , (4.11b)

where, in virtue of (4.10b), we must know B(s) along the ray s = r eiπ

with r > 0. We write

B
(
r e iπ

)
= ρ∗ cos(πγ∗) + iρ∗ sin(πγ∗) , (4.12b)

where 



ρ∗ = ρ∗(r) =

∣∣B
(
r eiπ

)∣∣ ,

γ∗ = γ∗(r) =
1

π
arg

[
B
(
r eiπ

)]
.

(4.13b)



As a consequence we formally write the required fundamental solutions
as

u(x, t) =

∫ ∞

0
e−rt P (x, r) dr , P (x, r) = −

1

π
Im

{
ũ
(
x, reiπ

)}
, (4.14a)

and

u∗(x, t) =

∫ ∞

0
e−rt P∗(x, r) dr , P∗(x, r) = −

1

π
Im

{
ũ∗

(
x, reiπ

)}
,

(4.14b)
where the functions P (x, r) and P∗(x, r) must be derived by using Eqs.
(4.10a)-(4.14a) and Eqs. (4.10b)-(4.14b), respectively. We recognize
that, in view of the transformation (2.7), the expressions of P and P∗

are related to each other by the transformation

ρ∗(r) ⇐⇒ r/ρ(r) , γ∗(r) ⇐⇒ 1 − γ(r) . (4.15)



We then limit ourselves to provide the explicit expression for the C form

P∗(x, r) =
1

2πr
Im

{
ρ1/2
∗ e iπγ∗/2 exp

[
− e iπγ∗/2ρ1/2

∗ x
]}

=
1

2πr
ρ1/2
∗ e−ρ1/2

∗ x cos(πγ∗/2) sin
[
πγ∗/2 − ρ1/2

∗ x sin(πγ∗/2)
]

.

(4.16)
For the R-L form the corresponding expression of P (x; r) is obtained
from (4.16) by applying the transformation (4.15).

Herafter we exhibit some plots of the fundamental solutions for the two
case studies considered in subsection 3.2 in order to point out the re-
markable difference between the R-L and the C forms.



Plots of the fundamental solutions

For the case of two orders, we chose {β1 = 1/4, β2 = 1} in order to
contrast the evolution of the fundamental solution for the R-L and the
C forms.

In a following Figure we exhibit the plots of the corresponding solution
versus x (in the interval |x| ≤ 5), at different times, selected as t = 0.1,
t = 1 and t = 10. In this limited spatial range we can note how the time
evolution of the pdfdepends on the different time-asymptotic behaviour
of the variance, for the two forms, as stated in Eqs. (3.12a)-(3.12b),
respectively.

For the uniform distribution, we find it instructive to compare in another
Figure the solutions corresponding to R-L and C forms with the solutions
of the fractional diffusion of a single order β0 = 1/4, 3/4, 1 at fixed times,
selected as t = 1, 10. We have skipped β0 = 1/2 for a better view of the
plots.
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The fundamental solution versus x (in the interval |x| ≤ 5), for the
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Conclusions on time-fractional diffusion
of distributed order

We have investigated the time fractional diffusion equation with (dis-
cretely or continuously) distributed order between 0 and 1 in the Riemann-
Liouville and in the Caputo forms, providing the Fourier-Laplace repre-
sentation of the corresponding fundamental solutions.

Except for the case of a single order, for which the two forms are equiv-
alent with a self-similar fundamental solution, for a general order dis-
tribution the equivalence and the self-similarity are lost. In particular
the asymptotic behaviour of the fundamental solution and its variance
at small and large times strongly depends on the selected approach.

We have considered two simple but noteworthy case-studies of distrib-
uted order, namely the case of a superposition of two different orders β1

and β2 and the case of a uniform order distribution. In the first case one
of the orders dominates the time-asymptotics near zero, the other near
infinity, but β1 and β2 change their roles when switching from the R-L
form to the C form of the time-fractional diffusion.



The asymptotics for uniform order density is remarkably different, the
extreme orders now being (roughly speaking) 0 and 1. We now meet
super-slow and slightly super-fast time behaviours of the variance near
zero and near infinity, again with the interchange of behaviours between
the R-L and C form. We have clearly pointed out the above effects with
the figures in sub-section 3.3, in particular the extremely slow growth of
the variance as t → ∞ for the C form.

After the analysis of the variance, that in practice requires only the
inversion of a Laplace transform, we have considered the task of the
double inversion of the Laplace-Fourier representation. For a general
order distribution we were able to express the fundamental solution in
terms of a Laplace integral in time with a kernel which depends on space
and order distribution in a simple form, see Eqs. (4.14)-(4.16). For the
two case studies the plots of the fundamental solutions (reported in sub-
section 4.4) have shown their dependence on the different asymptotic
behavior of the corresponding variance.




